Calculando a média móvel no Excel Neste pequeno tutorial, você aprenderá a calcular rapidamente uma média móvel simples no Excel, quais funções usar para obter a média móvel para os últimos N dias, semanas, meses ou anos e como adicionar um movimento Linha de tendência média para um gráfico do Excel. Em alguns artigos recentes, nós demos uma olhada no cálculo da média no Excel. Se você está seguindo nosso blog, você já sabe como calcular uma média normal e quais funções usar para encontrar a média ponderada. No tutorial de hoje, vamos discutir duas técnicas básicas para calcular a média móvel no Excel. O que é a média móvel De um modo geral, a média móvel (também referida como média móvel, média móvel ou média móvel) pode ser definida como uma série de médias para diferentes subconjuntos do mesmo conjunto de dados. É freqüentemente usado em estatísticas, previsões econômicas e meteorológicas ajustadas sazonalmente para entender as tendências subjacentes. Na negociação de ações, média móvel é um indicador que mostra o valor médio de um título ao longo de um determinado período de tempo. Nos negócios, é uma prática comum para calcular uma média móvel de vendas para os últimos 3 meses para determinar a tendência recente. Por exemplo, a média móvel das temperaturas de três meses pode ser calculada tomando a média das temperaturas de janeiro a março, depois a média das temperaturas de fevereiro a abril, depois de março a maio, e assim por diante. Existem diferentes tipos de média móvel, como simples (também conhecido como aritmética), exponencial, variável, triangular e ponderada. Neste tutorial, estaremos analisando a média móvel mais comumente utilizada. Calculando a média móvel simples no Excel No geral, existem duas maneiras de obter uma média móvel simples no Excel - usando fórmulas e opções de linha de tendência. Os exemplos seguintes demonstram ambas as técnicas. Exemplo 1. Calcular a média móvel durante um determinado período de tempo Uma média móvel simples pode ser calculada em nenhum momento com a função MÉDIA. Suponha que você tenha uma lista de temperaturas médias mensais na coluna B e queira encontrar uma média móvel de 3 meses (como mostrado na imagem acima). Escreva uma fórmula média usual para os primeiros 3 valores e introduza-a na linha correspondente ao 3º valor da parte superior (célula C4 neste exemplo) e, em seguida, copie a fórmula para outras células na coluna: Coluna com uma referência absoluta (como B2) se você desejar, mas não se esqueça de usar referências de linha relativa (sem o sinal) para que a fórmula ajusta corretamente para outras células. Lembrando que uma média é calculada adicionando valores e dividindo a soma pelo número de valores a serem calculados, você pode verificar o resultado usando a fórmula SUM: Exemplo 2. Obter média móvel para os últimos N dias semanas meses anos Em uma coluna supondo que você tenha uma lista de dados, por exemplo Venda ou cotações de ações, e você quer saber a média dos últimos 3 meses em qualquer ponto do tempo. Para isso, você precisa de uma fórmula que recalcule a média assim que você digitar um valor para o próximo mês. Qual função do Excel é capaz de fazer isso O bom AVERAGE antigo em combinação com OFFSET e COUNT. MÉDIA (OFFSET (primeira célula, COUNT (intervalo inteiro) - N, 0, N, 1)) Onde N é o número dos últimos dias semanas meses anos para incluir na média. Não sei como usar essa fórmula de média móvel em planilhas do Excel O exemplo a seguir tornará as coisas mais claras. Supondo que os valores para a média estão na coluna B começando na linha 2, a fórmula seria a seguinte: E agora, vamos tentar entender o que esta fórmula de média móvel Excel está realmente fazendo. A COUNT função COUNT (B2: B100) conta quantos valores já estão inseridos na coluna B. Começamos a contar em B2 porque a linha 1 é o cabeçalho da coluna. A função OFFSET leva a célula B2 (o 1º argumento) como ponto de partida e desloca a contagem (o valor retornado pela função COUNT) movendo 3 linhas para cima (-3 no 2º argumento). Como resultado, ele retorna a soma dos valores em um intervalo composto por 3 linhas (3 no 4 º argumento) e 1 coluna (1 no último argumento), que é o mais tardar 3 meses que queremos. Finalmente, a soma retornada é passada para a função MÉDIA para calcular a média móvel. Gorjeta. Se você estiver trabalhando com planilhas continuamente atualizáveis onde novas linhas provavelmente serão adicionadas no futuro, forneça um número suficiente de linhas para a função COUNT para acomodar novas entradas possíveis. Não é um problema se você incluir mais linhas do que realmente necessário contanto que você tenha a primeira célula direita, a função COUNT descartará todas as linhas vazias de qualquer maneira. Como você provavelmente notou, a tabela neste exemplo contém dados para apenas 12 meses, e ainda o intervalo B2: B100 é fornecido para COUNT, apenas para estar no lado de salvar :) Exemplo 3. Get média móvel para os últimos valores de N em Uma linha Se você deseja calcular uma média móvel para os últimos N dias, meses, anos, etc. na mesma linha, você pode ajustar a fórmula Offset desta maneira: Supondo que B2 é o primeiro número na linha e você quer Para incluir os últimos 3 números na média, a fórmula tem a seguinte forma: Criando um gráfico de média móvel do Excel Se você já criou um gráfico para seus dados, adicionar uma linha de tendência de média móvel para esse gráfico é uma questão de segundos. Para isso, vamos usar o recurso Excel Trendline e seguir as etapas detalhadas abaixo. Para este exemplo, criei um gráfico de colunas em 2D (grupo Inserir guia gt Gráficos) para nossos dados de vendas: E agora, queremos visualizar a média móvel por 3 meses. No Excel 2010 e no Excel 2007, vá para Layout gt Trendline gt Mais Opções da Trendline. Gorjeta. Se você não precisa especificar os detalhes, como o intervalo de média móvel ou os nomes, você pode clicar em Design gt Adicionar elemento gráfico gt Trendline gt Média móvel para o resultado imediato. O painel Format Trendline será aberto no lado direito da planilha no Excel 2013 e a caixa de diálogo correspondente aparecerá no Excel 2010 e 2007.Para refinar o bate-papo, você pode alternar para a linha Fill amp ou os efeitos na guia O painel Format Trendline e jogar com diferentes opções, como tipo de linha, cor, largura, etc. Para análise de dados poderosa, você pode querer adicionar algumas linhas de tendência de média móvel com intervalos de tempo diferentes para ver como a tendência evolui. A seguinte imagem mostra as linhas de tendência de média móvel de 2 meses (verde) e 3 meses (tijolo vermelho): Bem, isso é tudo sobre como calcular a média móvel no Excel. A planilha de exemplo com fórmulas de média móvel e linha de tendência está disponível para download - planilha de Moving Average. Obrigado pela leitura e espero vê-lo na próxima semana O seu exemplo 3 acima (obter média móvel para os últimos valores de N em uma linha) funcionou perfeitamente para mim se a linha inteira contiver números. Estou fazendo isso para a minha liga de golfe onde usamos uma média de 4 semanas de rolamento. Às vezes os golfistas estão ausentes assim que em vez de uma contagem, eu pndo o ABS (texto) na pilha. Eu ainda quero que a fórmula procure as últimas 4 pontuações e não conte o ABS no numerador ou no denominador. Como faço para modificar a fórmula para fazer isso Sim, eu notei se as células estavam vazias os cálculos estavam incorretos. Na minha situação eu estou rastreando mais de 52 semanas. Mesmo se as últimas 52 semanas continham dados, o cálculo estava incorreto se qualquer célula antes das 52 semanas estivesse em branco. Estou tentando criar uma fórmula para obter a média móvel para 3 período, apreciar se você pode ajudar pls. Data Produto Preço 1012016 A 1,00 1012016 B 5,00 1012016 C 10,00 1022016 A 1,50 1022016 B 6,00 1022016 C 11,00 1032016 A 2,00 1032016 B 15,00 1032016 C 20,00 1042016 A 4,00 1042016 B 20,00 1042016 C 40,00 1052016 A 0,50 1052016 B 3,00 1052016 C 5,00 1062016 A 1.00 1062016 B 5.00 1062016 C 10.00 1072016 A 0.50 1072016 B 4.00 1072016 C 20.00 Oi, Estou impressionado com o vasto conhecimento ea instrução concisa e eficaz que você fornece. Eu também tenho uma consulta que eu espero que você pode emprestar seu talento com uma solução também. Eu tenho uma coluna A de 50 (semanalmente) intervalo datas. Eu tenho uma coluna B ao lado dele com a média de produção planejada por semana para completar alvo de 700 widgets (70050). Na próxima coluna eu soma meus incrementos semanais até a data (100 por exemplo) e recalculo a minha porcentagem restante da média por semanas restantes (ex 700-10030). Gostaria de repetir semanalmente um gráfico começando com a semana atual (não o início da data do eixo x do gráfico), com o valor somado (100) para que meu ponto de partida seja a semana atual mais o restante avgweek (20) e Terminar o gráfico linear no final da semana 30 e ponto y de 700. As variáveis de identificação da data da célula correta na coluna A e terminando na meta 700 com uma atualização automática a partir de data de hoje, está me confundindo. Por favor, ajude com a fórmula correta para calcular a soma de horas inseridas em um período de movimento de 7 dias. Você pode ajudar por favor com uma fórmula (eu tenho tentado lógica IF com hoje e apenas não resolvê-lo. Por exemplo. Eu preciso saber o quanto as horas extras são trabalhadas por um indivíduo ao longo de um período contínuo de 7 dias calculado desde o início do ano até o final do ano. A quantidade total de horas trabalhadas deve atualizar para os 7 dias de rolamento como eu entro as horas extras em em uma base diária Obrigado Existe uma maneira de obter uma soma de um número para os últimos 6 meses Eu quero ser capaz de calcular o Soma nos últimos 6 meses todos os dias. Tão mal precisa para atualizar todos os dias. Eu tenho uma folha de Excel com colunas de todos os dias para o último ano e acabará por adicionar mais a cada ano. Qualquer ajuda seria muito apreciada como eu estou stumped Olá, eu tenho uma necessidade semelhante. Preciso criar um relatório que mostre novas visitas de clientes, visitas de clientes totais e outros dados. Todos esses campos são atualizados diariamente em uma planilha, eu preciso puxar os dados para os 3 meses anteriores, divididos por mês, 3 semanas por semanas e últimos 60 dias. Existe um VLOOKUP, ou fórmula, ou algo que eu poderia fazer que vai ligar para a folha sendo atualizada diariamente que também permitirá que o meu relatório para atualizar DailyMoving Introdução Previsão média. Como você pode imaginar, estamos olhando para algumas das abordagens mais primitivas para a previsão. Mas espero que estas sejam pelo menos uma introdução que vale a pena para algumas das questões de computação relacionadas com a implementação de previsões em planilhas. Neste sentido, vamos continuar a partir do início e começar a trabalhar com previsões de média móvel. Previsões médias móveis. Todo mundo está familiarizado com as previsões de média móvel, independentemente de eles acreditam que são. Todos os estudantes universitários fazê-los o tempo todo. Pense nos seus resultados de teste em um curso onde você vai ter quatro testes durante o semestre. Vamos supor que você tem um 85 em seu primeiro teste. O que você poderia prever para sua pontuação do segundo teste O que você acha que seu professor iria prever para a sua próxima pontuação de teste O que você acha que seus amigos podem prever para a sua próxima pontuação de teste O que você acha que seus pais podem prever para a sua próxima pontuação de teste Todo o blabbing você pôde fazer a seus amigos e pais, eles e seu professor são muito prováveis esperar que você comece algo na área dos 85 você apenas começ. Bem, agora vamos supor que, apesar de sua auto-promoção para seus amigos, você superestimar-se e figura que você pode estudar menos para o segundo teste e assim você começa um 73. Agora o que são todos os interessados e despreocupado vai Antecipar você vai chegar em seu terceiro teste Existem duas abordagens muito provável para eles desenvolver uma estimativa, independentemente de se eles vão compartilhar com você. Eles podem dizer a si mesmos: "Esse cara está sempre soprando fumaça sobre sua inteligência. Hes que vai obter outro 73 se hes afortunado. Talvez os pais tentem ser mais solidários e dizer: "Bem, até agora você conseguiu um 85 e um 73, então talvez você deva imaginar sobre como obter um (85 73) 2 79. Eu não sei, talvez se você fez menos festas E werent abanando a doninhas em todo o lugar e se você começou a fazer muito mais estudando você poderia obter uma pontuação mais alta. Ambos estas estimativas são, na verdade, a média móvel previsões. O primeiro é usar apenas sua pontuação mais recente para prever o seu desempenho futuro. Isso é chamado de média móvel usando um período de dados. O segundo é também uma previsão média móvel, mas usando dois períodos de dados. Vamos supor que todas essas pessoas rebentando em sua grande mente têm tipo de puto você fora e você decidir fazer bem no terceiro teste para suas próprias razões e colocar uma pontuação mais alta na frente de seus quotalliesquot. Você toma o teste e sua pontuação é realmente um 89 Todos, incluindo você mesmo, está impressionado. Então agora você tem o teste final do semestre chegando e, como de costume, você sente a necessidade de incitar todos a fazer suas previsões sobre como você vai fazer no último teste. Bem, espero que você veja o padrão. Agora, espero que você possa ver o padrão. Qual você acha que é o apito mais preciso enquanto trabalhamos. Agora vamos voltar para a nossa nova empresa de limpeza iniciada por sua meia irmã distante chamado Whistle While We Work. Você tem alguns dados de vendas anteriores representados pela seção a seguir de uma planilha. Primeiro, apresentamos os dados para uma previsão média móvel de três períodos. A entrada para a célula C6 deve ser Agora você pode copiar esta fórmula de célula para baixo para as outras células C7 a C11. Observe como a média se move sobre os dados históricos mais recentes, mas usa exatamente os três períodos mais recentes disponíveis para cada previsão. Você também deve notar que nós realmente não precisamos fazer as previsões para os períodos passados, a fim de desenvolver a nossa previsão mais recente. Isso é definitivamente diferente do modelo de suavização exponencial. Ive incluído o quotpast previsões, porque vamos usá-los na próxima página da web para medir a validade de previsão. Agora eu quero apresentar os resultados análogos para uma previsão média móvel de dois períodos. A entrada para a célula C5 deve ser Agora você pode copiar esta fórmula de célula para baixo para as outras células C6 a C11. Observe como agora apenas as duas mais recentes peças de dados históricos são usados para cada previsão. Mais uma vez eu incluí as previsões quotpast para fins ilustrativos e para uso posterior na validação de previsão. Algumas outras coisas que são de importância notar. Para uma previsão média móvel de m-período, apenas os m valores de dados mais recentes são usados para fazer a previsão. Nada mais é necessário. Para uma previsão média móvel do período m, ao fazer previsões quotpast, observe que a primeira predição ocorre no período m 1. Ambas as questões serão muito significativas quando desenvolvemos nosso código. Desenvolvendo a função de média móvel. Agora precisamos desenvolver o código para a previsão da média móvel que pode ser usado de forma mais flexível. O código segue. Observe que as entradas são para o número de períodos que você deseja usar na previsão ea matriz de valores históricos. Você pode armazená-lo em qualquer pasta de trabalho que você deseja. Função MovingAverage (Histórico, NumberOfPeriods) Como Único Declarar e inicializar variáveis Dim Item Como variante Dim Counter Como Inteiro Dim Acumulação como único Dim HistoricalSize As Inteiro Inicializando variáveis Counter 1 Acumulação 0 Determinando o tamanho da Historical array HistoricalSize Historical. Count For Counter 1 To NumberOfPeriods Acumulando o número apropriado dos valores mais recentes anteriormente observados Acumulação Acumulação Histórico (HistoricalSize - NumberOfPeriods Counter) MovingAverage Acumulação NumberOfPeriods O código será explicado na classe. Você quer posicionar a função na planilha para que o resultado da computação apareça onde ele deve gostar do seguinte. Na prática, a média móvel fornecerá uma boa estimativa da média da série temporal se a média for constante ou mudar lentamente. No caso de uma média constante, o maior valor de m dará as melhores estimativas da média subjacente. Um período de observação mais longo medirá os efeitos da variabilidade. A finalidade de fornecer um m menor é permitir que a previsão responda a uma mudança no processo subjacente. Para ilustrar, propomos um conjunto de dados que incorpora mudanças na média subjacente das séries temporais. A figura mostra a série de tempo usada para ilustração juntamente com a demanda média a partir da qual a série foi gerada. A média começa como uma constante em 10. Começando no tempo 21, ele aumenta em uma unidade em cada período até atingir o valor de 20 no tempo 30. Então ele se torna constante novamente. Os dados são simulados adicionando à média um ruído aleatório de uma distribuição Normal com média zero e desvio padrão 3. Os resultados da simulação são arredondados para o inteiro mais próximo. A tabela mostra as observações simuladas usadas para o exemplo. Quando usamos a tabela, devemos lembrar que a qualquer momento, apenas os dados passados são conhecidos. As estimativas do parâmetro do modelo,, para três valores diferentes de m são mostradas juntamente com a média das séries temporais na figura abaixo. A figura mostra a estimativa média móvel da média em cada momento e não a previsão. As previsões mudariam as curvas de média móvel para a direita por períodos. Uma conclusão é imediatamente aparente a partir da figura. Para as três estimativas, a média móvel está aquém da tendência linear, com o atraso aumentando com m. O atraso é a distância entre o modelo ea estimativa na dimensão temporal. Devido ao atraso, a média móvel subestima as observações à medida que a média está aumentando. O viés do estimador é a diferença em um tempo específico no valor médio do modelo eo valor médio predito pela média móvel. O viés quando a média está aumentando é negativo. Para uma média decrescente, o viés é positivo. O atraso no tempo eo viés introduzido na estimativa são funções de m. Quanto maior o valor de m. Maior será a magnitude do atraso e do viés. Para uma série continuamente crescente com tendência a. Os valores de lag e viés do estimador da média são dados nas equações abaixo. As curvas de exemplo não correspondem a essas equações porque o modelo de exemplo não está aumentando continuamente, em vez disso, ele começa como uma constante, muda para uma tendência e, em seguida, torna-se constante novamente. Também as curvas de exemplo são afetadas pelo ruído. A previsão média móvel de períodos no futuro é representada deslocando as curvas para a direita. O atraso e o viés aumentam proporcionalmente. As equações abaixo indicam o atraso e o viés de um período de previsão para o futuro quando comparado aos parâmetros do modelo. Novamente, estas fórmulas são para uma série de tempo com uma tendência linear constante. Não devemos nos surpreender com esse resultado. O estimador da média móvel é baseado na suposição de uma média constante, eo exemplo tem uma tendência linear na média durante uma porção do período do estudo. Como as séries de tempo real raramente obedecerão exatamente aos pressupostos de qualquer modelo, devemos estar preparados para tais resultados. Podemos também concluir a partir da figura que a variabilidade do ruído tem o maior efeito para m menor. A estimativa é muito mais volátil para a média móvel de 5 do que a média móvel de 20. Temos os desejos conflitantes de aumentar m para reduzir o efeito da variabilidade devido ao ruído e diminuir m para fazer a previsão mais sensível às mudanças Em média O erro é a diferença entre os dados reais e o valor previsto. Se a série temporal é verdadeiramente um valor constante, o valor esperado do erro é zero ea variância do erro é composta por um termo que é uma função de e um segundo termo que é a variância do ruído,. O primeiro termo é a variância da média estimada com uma amostra de m observações, assumindo que os dados provêm de uma população com média constante. Este termo é minimizado tornando m o maior possível. Um grande m faz com que a previsão não responda a uma mudança nas séries temporais subjacentes. Para tornar a previsão responsiva às mudanças, queremos que m seja o menor possível (1), mas isso aumenta a variância do erro. A previsão prática requer um valor intermediário. Previsão com o Excel O suplemento de Previsão implementa as fórmulas de média móvel. O exemplo abaixo mostra a análise fornecida pelo add-in para os dados da amostra na coluna B. As primeiras 10 observações são indexadas -9 a 0. Em comparação com a tabela acima, os índices de período são deslocados por -10. As primeiras dez observações fornecem os valores de inicialização para a estimativa e são usadas para calcular a média móvel para o período 0. A coluna MA (10) (C) mostra as médias móveis calculadas. O parâmetro de média móvel m está na célula C3. A coluna Fore (1) (D) mostra uma previsão para um período no futuro. O intervalo de previsão está na célula D3. Quando o intervalo de previsão é alterado para um número maior, os números na coluna Fore são deslocados para baixo. A coluna Err (1) (E) mostra a diferença entre a observação e a previsão. Por exemplo, a observação no tempo 1 é 6. O valor previsto a partir da média móvel no tempo 0 é 11.1. O erro é então -5.1. O desvio padrão eo desvio médio médio (MAD) são calculados nas células E6 e E7, respectivamente. Exemplos de cálculo de previsão A.1 Métodos de cálculo de previsão Doze métodos de cálculo de previsões estão disponíveis. A maioria desses métodos fornece controle limitado do usuário. Por exemplo, o peso colocado nos dados históricos recentes ou o intervalo de datas dos dados históricos utilizados nos cálculos pode ser especificado. Os exemplos seguintes mostram o procedimento de cálculo para cada um dos métodos de previsão disponíveis, dado um conjunto idêntico de dados históricos. Os exemplos a seguir usam os mesmos dados de vendas de 2004 e 2005 para produzir uma previsão de vendas de 2006. Além do cálculo da previsão, cada exemplo inclui uma previsão simulada de 2005 para um período de retenção de três meses (opção de processamento 19 3), que é usado para os cálculos de precisão e desvio absoluto médio (vendas reais em comparação com a previsão simulada). A.2 Critérios de Avaliação de Desempenho de Previsão Dependendo da sua seleção de opções de processamento e das tendências e padrões existentes nos dados de vendas, alguns métodos de previsão terão um desempenho melhor do que outros para um dado conjunto de dados históricos. Um método de previsão apropriado para um produto pode não ser apropriado para outro produto. Também é improvável que um método de previsão que forneça bons resultados numa fase do ciclo de vida de um produto permaneça apropriado ao longo de todo o ciclo de vida. Você pode escolher entre dois métodos para avaliar o desempenho atual dos métodos de previsão. Estes são Desvio Médio Absoluto (MAD) e Porcentagem de Precisão (POA). Ambos os métodos de avaliação de desempenho requerem dados de vendas históricos para um período de tempo especificado pelo usuário. Esse período de tempo é chamado de período de retenção ou período de melhor ajuste (PBF). Os dados neste período são usados como base para recomendar qual dos métodos de previsão usar na realização da projeção de projeção seguinte. Essa recomendação é específica para cada produto e pode mudar de uma geração de projeção para outra. Os dois métodos de avaliação de desempenho de previsão são demonstrados nas páginas que seguem os exemplos dos doze métodos de previsão. A.3 Método 1 - Percentual especificado no último ano Este método multiplica os dados de vendas do ano anterior por um fator especificado pelo usuário, por exemplo, 1,10 para um aumento de 10 ou 0,97 para uma diminuição de 3. Histórico de vendas necessário: Um ano para calcular a previsão mais o número de períodos de tempo especificado pelo usuário para avaliar o desempenho da previsão (opção de processamento 19). A.4.1 Cálculo de Previsão Faixa do histórico de vendas a ser usado no cálculo do fator de crescimento (opção de processamento 2a) 3 neste exemplo. Soma dos últimos três meses de 2005: 114 119 137 370 Soma dos mesmos três meses do ano anterior: 123 139 133 395 O fator calculado 370395 0,9367 Calcule as previsões: Janeiro de 2005 vendas 128 0,9367 119,8036 ou cerca de 120 de fevereiro de 2005 vendas 117 0,9367 109,5939 ou cerca de 110 de março de 2005 vendas 115 0,9367 107,7205 ou cerca de 108 A.4.2 Cálculo de Previsão Simulado Soma dos três meses de 2005 antes do período de retenção (julho, agosto, setembro): 129 140 131 400 Soma os mesmos três meses para o Ano anterior: 141 128 118 387 O fator calculado 400387 1.033591731 Calcula a previsão simulada: Outubro, 2004 vendas 123 1.033591731 127.13178 Vendas de novembro de 2004 139 1.033591731 143.66925 Vendas de dezembro de 2004 133 1.033591731 137.4677 A.4.3 Percentagem de Precisão Cálculo POA (127.13178 143.66925 137.4677) (114 119 137) 100 408,26873 370 100 110,3429 A.4.4 Cálculo do Desvio Absoluto Médio MAD (127,13178 - 114 143,66925 - 119 137,4677 - 137) 3 (13.13178 24.66925 0.4677) 3 12.75624 A.5 Método 3 - Último ano até este ano Este método copia os dados de vendas do ano anterior para o próximo ano. Histórico de vendas necessário: Um ano para calcular a previsão mais o número de períodos de tempo especificados para avaliar o desempenho da previsão (opção de processamento 19). A.6.1 Cálculo da Previsão Número de períodos a incluir na média (opção de processamento 4a) 3 neste exemplo Para cada mês da previsão, faça a média dos dados dos três meses anteriores. Previsão de Janeiro: 114 119 137 370, 370 3 123.333 ou 123 Previsão de Fevereiro: 119 137 123 379, 379 3 126.333 ou 126 Previsão de Março: 137 123 126 379, 386 3 128.667 ou 129 A.6.2 Cálculo Previsto Simulado Outubro 2005 140 131) 3 133.3333 Vendas de Novembro de 2005 (140 131 114) 3 128.3333 Vendas de Dezembro de 2005 (131 114 119) 3 121.3333 A.6.3 Percentagem de Precisão Cálculo POA (133.3333 128.3333 121.3333) (114 119 137) 100 103.513 A.6.4 Média Absoluta Cálculo do Desvio MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) 3 14.7777 A.7 Método 5 - Aproximação linear A aproximação linear calcula uma tendência baseada em dois pontos de dados do histórico de vendas. Esses dois pontos definem uma linha de tendência reta projetada para o futuro. Use esse método com cautela, pois as previsões de longo alcance são alavancadas por pequenas alterações em apenas dois pontos de dados. Histórico de vendas necessário: O número de períodos a incluir em regressão (opção de processamento 5a), mais 1 mais o número de períodos de tempo para avaliar o desempenho da previsão (opção de processamento 19). A.8.1 Cálculo de Previsão Número de períodos a incluir em regressão (opção de processamento 6a) 3 neste exemplo Para cada mês da previsão, adicione o aumento ou diminuição durante os períodos especificados antes do período de retenção do período anterior. Média dos três meses anteriores (114 119 137) 3 123.3333 Resumo dos três meses anteriores com ponderação considerada (114 1) (119 2) (137 3) 763 Diferença entre os valores 763 - 123.3333 (1 2 3) 23 Relação ( 12 22 32) - 2 3 14 - 12 2 Valor1 DiferençaRatio 232 11,5 Valor2 Relação média - valor1 123,3333 - 11,5 2 100,333 Previsão (1 n) valor1 valor2 4 11,5 100,3333 146,333 ou 146 Previsão 5 11,5 100,3333 157,8333 ou 158 Previsão 6 11,5 100,3333 169,3333 Ou 169 A.8.2 Cálculo de Previsão Simulado Vendas de Outubro de 2004: Média dos três meses anteriores (129 140 131) 3 133.3333 Resumo dos três meses anteriores com ponderação considerada (129 1) (140 2) (131 3) 802 Diferença entre Valores 802 - 133.3333 (1 2 3) 2 Relação (12 22 32) - 2 3 14 - 12 2 Valor1 DiferençaRatio 22 1 Valor2 Relação média - valor1 133.3333 - 1 2 131.3333 Previsão (1 n) valor1 valor2 4 1 131.3333 135.3333 Novembro de 2004 vendas Média dos últimos três meses (140 131 114) 3 128.3333 Resumo dos três meses anteriores com peso considerado (140 1) (131 2) (114 3) 744 Diferença entre os valores 744 - 128.3333 (1 2 3) -25.9999 Valor1 DiferençaRatio -25,99992 -12,9999 Valor2 Relação média-valor1 128,3333 - (-12,9999) 2 154,3333 Previsão 4 -12,9999 154,3333 102,3333 Vendas de Dezembro de 2004 Média dos três meses anteriores (131 114 119) 3 121.3333 Resumo dos três meses anteriores com ponderação considerada 131 1) (114 2) (119 3) 716 Diferença entre os valores 716 - 121,3333 (1 2 3) -11,9999 Valor1 DiferençaRatio -11,99992 -5,9999 Valor2 Relação média-valor1 121,3333 - (-5,9999) 2 133,333 Previsão 4 (-5,9999 ) 133,3333 109,3333 A.8.3 Percentagem de Precisão Cálculo POA (135,33 102,33 109,33) (114 119 137) 100 93,78 A.8,4 Cálculo do Desvio Absoluto Médio MAD (135,33-1 114 102,33 - 119 109,33-137) 3 21,88 A.9 Método 7 - Secon D Grau de Aproximação A Regressão Linear determina os valores de aeb na fórmula de previsão Y a bX com o objetivo de ajustar uma linha reta aos dados do histórico de vendas. Aproximação de segundo grau é semelhante. No entanto, este método determina valores para a, b e c na fórmula de previsão Y a bX cX2 com o objetivo de ajustar uma curva aos dados do histórico de vendas. Este método pode ser útil quando um produto está na transição entre fases de um ciclo de vida. Por exemplo, quando um novo produto passa da introdução para os estádios de crescimento, a tendência de vendas pode acelerar. Devido ao termo de segunda ordem, a previsão pode aproximar-se rapidamente do infinito ou cair para zero (dependendo se o coeficiente c é positivo ou negativo). Portanto, este método é útil apenas no curto prazo. Especificações de previsão: As fórmulas encontram a, b e c para encaixar uma curva em exatamente três pontos. Você especifica n na opção de processamento 7a, o número de períodos de tempo de dados a serem acumulados em cada um dos três pontos. Neste exemplo n 3. Portanto, os dados de vendas reais de abril a junho são combinados no primeiro ponto, Q1. Julho a setembro são adicionados em conjunto para criar Q2, e de outubro a dezembro somam para Q3. A curva será ajustada aos três valores Q1, Q2 e Q3. Histórico de vendas necessário: 3 n períodos para o cálculo da previsão mais o número de períodos necessários para avaliar o desempenho da previsão (PBF). Número de períodos a incluir (opção de processamento 7a) 3 neste exemplo Utilize os meses anteriores (3 n) em blocos de três meses: Q1 (Abr - Jun) 125 122 137 384 Q2 (Jul - Set) 129 140 131 400 Q3 O passo seguinte envolve o cálculo dos três coeficientes a, b e c a serem utilizados na fórmula de previsão Y a bX cX2 (1) Q1 a bX cX2 (onde X1) abc (2) Q2 A b c c X 2 (onde X 2) a 2b 4c (3) Q3 a bX cX2 (onde X 3) a 3b 9c Resolva as três equações simultaneamente para encontrar b, ae c: Subtraia a equação (1) da equação (2) E resolva para b (2) - (1) Q2 - Q1 b 3c Substitua esta equação para b na equação (3) (3) Q3 a 3 (Q2 - Q1) - 3c c Finalmente, substitua estas equações por aeb por (Q3 - Q2) (Q1 - Q2) 2 O método de Aproximação de Segundo Grau calcula a, b e c da seguinte forma: a Q3 (Q2 - Q1) 3 (Q2 - Q1) 370 - 3 (400 - 384) 322 c (Q3 - Q2) (Q1 - Q2) 2 (370-400) (384-400) 2 -23 b (Q2 - Q1) - 3c (400 - 384) - (3 -23) 85 Y a bX cX2 322 85X (-23) X2 Previsão de Janeiro a Março (X4): (322 340 - 368) 3 2943 98 Por período Previsão de Abril a Junho (X5): (322 425-575) 3 57.333 ou 57 por período Previsão de Julho a Setembro (X6): (322 510 - 828) 3 1.33 ou 1 por período de Outubro a Dezembro (X7) 595 - 11273 -70 A.9.2 Cálculo de Previsão Simulado Vendas de outubro, novembro e dezembro de 2004: Q1 (jan - mar) 360 Q2 (abril a junho) 384 Q3 (jul - set) 400 a 400 - 3 (384 - 360) 328 c (400 - 384) (360 - 384) 2 -4 b (384 - 360) - 3 (-4) 36 328 36 4 (-4) 163 136 A.9.3 Percentagem do cálculo da precisão POA (136 136 136) (114 119 137) 100 110,27 A.9.4 Cálculo do Desvio Absoluto Médio MAD (136 - 114 136 - 119 136 - 137) 3 13,33 A.10 Método 8 - Método Flexível O Método Flexível (Percentagem sobre n Meses Anterior) é semelhante ao Método 1, Percentagem em relação ao ano passado. Ambos os métodos multiplicam os dados de vendas de um período de tempo anterior por um fator especificado pelo usuário e, em seguida, projetam esse resultado no futuro. No método Percent Over Last Year, a projeção é baseada em dados do mesmo período do ano anterior. O método flexível adiciona a capacidade de especificar um período de tempo diferente do mesmo período do ano passado para usar como base para os cálculos. Fator de multiplicação. Por exemplo, especifique 1.15 na opção de processamento 8b para aumentar os dados do histórico de vendas anteriores em 15. Período de base. Por exemplo, n 3 fará com que a primeira previsão se baseie nos dados de vendas em outubro de 2005. Histórico mínimo de vendas: O usuário especificou o número de períodos de volta ao período base, mais o número de períodos necessários para avaliar o desempenho da previsão PBF). A.10.4 Cálculo do Desvio Absoluto Médio MAD (148 - 114 161 - 119 151 - 137) 3 30 A.11 Método 9 - Média Móvel Ponderada O método Média Móvel Ponderada (WMA) é semelhante ao Método 4, Média Móvel (MA). No entanto, com a Média Móvel Ponderada, você pode atribuir pesos desiguais aos dados históricos. O método calcula uma média ponderada do histórico de vendas recente para chegar a uma projeção para o curto prazo. Os dados mais recentes geralmente são atribuídos a um peso maior do que os dados mais antigos, o que torna a WMA mais responsiva às mudanças no nível de vendas. No entanto, o viés de previsão e erros sistemáticos ainda ocorrem quando o histórico de vendas do produto exibe tendência forte ou padrões sazonais. Esse método funciona melhor para as projeções de curto prazo de produtos maduros do que para produtos em estágios de crescimento ou obsolescência do ciclo de vida. N o número de períodos de histórico de vendas a serem utilizados no cálculo da previsão. Por exemplo, especifique n 3 na opção de processamento 9a para usar os três períodos mais recentes como base para a projeção para o próximo período de tempo. Um grande valor para n (como 12) requer mais histórico de vendas. Isso resulta em uma previsão estável, mas será lento para reconhecer mudanças no nível de vendas. Por outro lado, um pequeno valor para n (como 3) responderá mais rapidamente às mudanças no nível de vendas, mas a previsão pode flutuar tão amplamente que a produção não pode responder às variações. O peso atribuído a cada um dos períodos de dados históricos. Os pesos atribuídos devem totalizar 1,00. Por exemplo, quando n 3, atribua pesos de 0,6, 0,3 e 0,1, com os dados mais recentes recebendo o maior peso. Histórico de vendas mínimo necessário: n mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (PBF). MAD (133,5 - 114 121,7 - 119 118,7 - 137) 3 13,5 A.12 Método 10 - Suavização linear Este método é semelhante ao Método 9, Média Móvel Ponderada (WMA). No entanto, em vez de atribuir arbitrariamente ponderações aos dados históricos, uma fórmula é usada para atribuir pesos que diminuem linearmente e somam a 1,00. O método calcula então uma média ponderada do histórico de vendas recente para chegar a uma projeção para o curto prazo. Como acontece com todas as técnicas de projeção de média móvel linear, o viés de previsão e os erros sistemáticos ocorrem quando o histórico de vendas do produto exibe tendência forte ou padrões sazonais. Esse método funciona melhor para as projeções de curto prazo de produtos maduros do que para produtos em estágios de crescimento ou obsolescência do ciclo de vida. N o número de períodos de histórico de vendas a serem utilizados no cálculo da previsão. Isto é especificado na opção de processamento 10a. Por exemplo, especifique n 3 na opção de processamento 10b para usar os três períodos mais recentes como base para a projeção para o próximo período de tempo. O sistema atribuirá automaticamente os pesos aos dados históricos que diminuem linearmente e somam a 1,00. Por exemplo, quando n3, o sistema atribuirá pesos de 0,5, 0,3333 e 0,1, com os dados mais recentes recebendo o maior peso. Histórico de vendas mínimo necessário: n mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (PBF). A.12.1 Cálculo de Previsão Número de períodos a incluir na média de suavização (opção de processamento 10a) 3 neste exemplo Razão para um período anterior 3 (n2 n) 2 3 (32 3) 2 36 0,5 Razão para dois períodos anteriores 2 (n2 n ) 2 2 (32 3) 2 26 0,3333 .. Proporção para três períodos anteriores 1 (n2 n) 2 1 (32 3) 2 16 0,1666 .. Previsão de Janeiro: 137 0,5 119 13 114 16 127,16 ou 127 Previsão de Fevereiro: 127 0,5 137 13 119 16 129 Previsão de Março: 129 0,5 127 13 137 16 129,666 ou 130 A.12.2 Cálculo Previsto Simulado Outubro 2004 vendas 129 16 140 26 131 36 133,6666 Novembro 2004 vendas 140 16 131 26 114 36 124 Dezembro 2004 vendas 131 16 114 26 119 36 119.3333 A.12.3 Cálculo do Desvio Absoluto Médio MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.13 Método 11 - Suavização Exponencial Este método é semelhante ao Método 10, Linear Smoothing. No Linear Smoothing, o sistema atribui pesos aos dados históricos que diminuem linearmente. Na suavização exponencial, o sistema atribui pesos que decrescem exponencialmente. A equação de previsão de suavização exponencial é: Previsão a (Vendas reais anteriores) (1 - a) Previsão Anterior A previsão é uma média ponderada das vendas reais do período anterior e da previsão do período anterior. A é o peso aplicado às vendas reais do período anterior. (1-a) é o peso aplicado à previsão do período anterior. Valores válidos para um intervalo de 0 a 1, e geralmente caem entre 0,1 e 0,4. A soma dos pesos é 1,00. A (1-a) 1 Você deve atribuir um valor para a constante de suavização, a. Se você não atribui valores para a constante de suavização, o sistema calcula um valor assumido com base no número de períodos do histórico de vendas especificado na opção de processamento 11a. A constante de suavização utilizada no cálculo da média suavizada para o nível geral ou magnitude das vendas. Valores válidos para um intervalo de 0 a 1. n o intervalo de dados do histórico de vendas a incluir nos cálculos. Geralmente um ano de dados de histórico de vendas é suficiente para estimar o nível geral de vendas. Para este exemplo, foi escolhido um pequeno valor para n (n 3) para reduzir os cálculos manuais necessários para verificar os resultados. A suavização exponencial pode gerar uma previsão baseada em apenas um ponto de dados históricos. Histórico de vendas mínimo necessário: n mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (PBF). A.13.1 Cálculo de Previsão Número de períodos a incluir na média de suavização (opção de processamento 11a) 3 e factor alfa (opção de processamento 11b) em branco neste exemplo um factor para os dados de vendas mais antigos 2 (11) ou 1 quando alfa é especificado Um fator para os dados de vendas mais antigos 2 (12), ou alfa quando alfa é especificado um fator para os dados mais antigos 3 de vendas 2 (13), ou alfa quando alfa é especificado um fator para os dados de vendas mais recentes 2 (1n) , Ou alfa quando alfa é especificado Novembro Sm. Média. A (Outubro Real) (1 - a) Outubro Sm. Média. 1 114 0 0 114 Dezembro Sm. Média. A (Novembro Real) (1 - a) Novembro Sm. Média. 23 119 13 114 117.3333 Janeiro Previsão a (Dezembro Real) (1 - a) Dezembro Sm. Média. 24 137 24 117.3333 127.16665 ou 127 Fevereiro Previsão Janeiro Previsão Previsão Janeiro Previsão 127 A.13.2 Previsão simulada Cálculo Julho, 2004 Sm. Média. 22 129 129 Agosto Sm. Média. 23 140 13 129 136,333 Setembro Sm. Média. 24 131 24 136.3333 133.6666 Outubro, 2004 vendas Setembro Sm. Média. 133,6666 Agosto, 2004 Sm. Média. 22 140 140 Setembro Sm. Média. 23 131 13 140 134 Outubro Sm. Média. 24 114 24 134 124 Novembro, 2004 vendas Setembro Sm. Média. 124 Setembro 2004 Sm. Média. 22 131 131 Outubro Sm. Média. 23 114 13 131 119,6666 Novembro Sm. Média. 24 119 24 119,6666 119,3333 Dezembro 2004 vendas Setembro Sm. Média. 119.3333 A.13.3 Percentagem de Precisão Cálculo POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.13.4 Cálculo do Desvio Absoluto Médio MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.14 Método 12 - Suavização Exponencial Com Tendência e Sazonalidade Este método é semelhante ao Método 11, Suavização Exponencial em que uma média suavizada é calculada. No entanto, o Método 12 também inclui um termo na equação de previsão para calcular uma tendência suavizada. A previsão é composta por uma média suavizada ajustada para uma tendência linear. Quando especificada na opção de processamento, a previsão também é ajustada pela sazonalidade. A constante de suavização utilizada no cálculo da média suavizada para o nível geral ou magnitude das vendas. Os valores válidos para alfa variam de 0 a 1. b a constante de suavização utilizada no cálculo da média suavizada para a componente de tendência da previsão. Os valores válidos para o intervalo beta variam de 0 a 1. Se um índice sazonal é aplicado à previsão aeb são independentes uns dos outros. Eles não precisam adicionar 1.0. Histórico de vendas mínimo obrigatório: dois anos mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (PBF). O método 12 usa duas equações exponenciais de suavização e uma média simples para calcular uma média suavizada, uma tendência suavizada e um fator sazonal médio simples. A.14.1 Cálculo de Previsão A) Uma média exponencialmente suavizada MAD (122.81 - 114 133.14 - 119 135.33 - 137) 3 8.2 A.15 Avaliação das Previsões Você pode selecionar métodos de previsão para gerar até doze previsões para cada produto. Cada método de previsão provavelmente criará uma projeção ligeiramente diferente. Quando milhares de produtos são previstos, é impraticável tomar uma decisão subjetiva sobre qual das previsões usar em seus planos para cada um dos produtos. O sistema avalia automaticamente o desempenho de cada um dos métodos de previsão selecionados e para cada um dos produtos previstos. Você pode escolher entre dois critérios de desempenho, Desvio Médio Absoluto (MAD) e Porcentagem de Precisão (POA). MAD é uma medida do erro de previsão. POA é uma medida do viés de previsão. Ambas as técnicas de avaliação de desempenho requerem dados de histórico de vendas reais para um período de tempo especificado pelo usuário. Esse período da história recente é chamado de período de retenção ou período de melhor ajuste (PBF). Para medir o desempenho de um método de previsão, use as fórmulas de previsão para simular uma previsão para o período de retenção histórico. Normalmente haverá diferenças entre os dados de vendas reais e a previsão simulada para o período de retenção. Quando vários métodos de previsão são selecionados, esse mesmo processo ocorre para cada método. Várias previsões são calculadas para o período de retenção e comparadas com o histórico de vendas conhecido para esse mesmo período de tempo. O método de previsão que produz o melhor ajuste (melhor ajuste) entre a previsão e as vendas reais durante o período de retenção é recomendado para uso em seus planos. Essa recomendação é específica para cada produto e pode mudar de uma geração de projeção para outra. A.16 Desvio Médio Absoluto (MAD) MAD é a média (ou média) dos valores absolutos (ou magnitude) dos desvios (ou erros) entre os dados reais e os previstos. MAD é uma medida da magnitude média de erros a esperar, dado um método de previsão e histórico de dados. Como os valores absolutos são usados no cálculo, os erros positivos não cancelam os erros negativos. Ao comparar vários métodos de previsão, aquele com o menor MAD mostrou ser o mais confiável para esse produto para esse período de retenção. Quando a previsão é imparcial e os erros são normalmente distribuídos, existe uma relação matemática simples entre MAD e duas outras medidas comuns de distribuição, desvio padrão e erro quadrático médio: A.16.1 Porcentagem de Precisão (POA) Porcentagem de Precisão (POA) é Uma medida do viés de previsão. Quando as previsões são consistentemente muito altas, os estoques se acumulam e os custos de estoque aumentam. Quando as previsões são consistentemente duas baixas, estoques são consumidos e serviço ao cliente declina. Uma previsão que é 10 unidades muito baixo, então 8 unidades muito alto, então 2 unidades muito alto, seria uma previsão imparciais. O erro positivo de 10 é cancelado por erros negativos de 8 e 2. Erro real - previsão Quando um produto pode ser armazenado no inventário e quando a previsão é imparcial, uma pequena quantidade de estoque de segurança pode ser usado para amortecer os erros. Nesta situação, não é tão importante eliminar os erros de previsão como é gerar previsões imparciais. No entanto, no sector dos serviços, a situação acima seria encarada como três erros. O serviço seria insuficiente no primeiro período, então overstaffed para os próximos dois períodos. Nos serviços, a magnitude dos erros de previsão é geralmente mais importante do que o viés previsto. A soma durante o período de retenção permite erros positivos para cancelar erros negativos. Quando o total de vendas reais excede o total de vendas previstas, a proporção é superior a 100. Naturalmente, é impossível ser mais de 100 precisos. Quando uma previsão é imparcial, a razão POA será 100. Portanto, é mais desejável ser 95 precisos do que 110 precisos. O critério POA seleciona o método de previsão que tem uma razão POA mais próxima de 100. O script nesta página aprimora a navegação de conteúdo, mas não altera o conteúdo de qualquer forma.
No comments:
Post a Comment